Effect of ozone oxidative preconditioning in preventing early radiation-induced lung injury in rats
نویسندگان
چکیده
Ionizing radiation causes its biological effects mainly through oxidative damage induced by reactive oxygen species. Previous studies showed that ozone oxidative preconditioning attenuated pathophysiological events mediated by reactive oxygen species. As inhalation of ozone induces lung injury, the aim of this study was to examine whether ozone oxidative preconditioning potentiates or attenuates the effects of irradiation on the lung. Rats were subjected to total body irradiation, with or without treatment with ozone oxidative preconditioning (0.72 mg/kg). Serum proinflammatory cytokine levels, oxidative damage markers, and histopathological analysis were compared at 6 and 72 h after total body irradiation. Irradiation significantly increased lung malondialdehyde levels as an end-product of lipoperoxidation. Irradiation also significantly decreased lung superoxide dismutase activity, which is an indicator of the generation of oxidative stress and an early protective response to oxidative damage. Ozone oxidative preconditioning plus irradiation significantly decreased malondialdehyde levels and increased the activity of superoxide dismutase, which might indicate protection of the lung from radiation-induced lung injury. Serum tumor necrosis factor alpha and interleukin-1 beta levels, which increased significantly following total body irradiation, were decreased with ozone oxidative preconditioning. Moreover, ozone oxidative preconditioning was able to ameliorate radiation-induced lung injury assessed by histopathological evaluation. In conclusion, ozone oxidative preconditioning, repeated low-dose intraperitoneal administration of ozone, did not exacerbate radiation-induced lung injury, and, on the contrary, it provided protection against radiation-induced lung damage.
منابع مشابه
The Evaluation of Melatonin Effect Against The Early Effect of Ionizing Radiation Induced Lung Injury
Background & Objective: Lung is a radiosensitive organ. Patients who are undergoing radiation therapy in their chest are subjected to radiation pneumonitis in the early phase and pulmonary fibrosis in the late one. Melatonin scavenges free radicals directly and acts as an indirect antioxidant through the activation of major antioxidant enzymes as well. The aim of the study thus is to investiga...
متن کاملProtective effect of vitamin D on radiation-induced lung injury: Experimental evidence
Background: Vitamin D, especially its most active metabolite 1,25-dihydroxyvitamin D₃(Vit D) is essential in regulating a wide variety of biologic processes, such as regulating mesangial cell activation. The objective of this study was to assess the histopathological changes of effectiveness of Vit D as a protective agent against radiation induced lung injury. Materials and Methods: Eighteen Wi...
متن کاملTime course changes of oxidative stress and inflammation in hyperoxia-induced acute lung injury in rats
Objective(s):Therapies with high levels of oxygen are commonly used in the management of critical care. However, prolonged exposure to hyperoxia can cause acute lung injury. Although oxidative stress and inflammation are purported to play an important role in the pathogenesis of acute lung injury, the exact mechanisms are still less known in the hyperoxic acute lung injury (HALI). Materials ...
متن کاملEstablishment of a rat model of radiation-induced lung injury
Background: Radiation-induced lung injury is a refractory side effect in lung cancer radiotherapy, the mechanism still remains unclear, hence an appropriate animal mode may become useful to investigate it. Materials and Methods: 50 female Wistar rats were randomly divided into 5 groups, average 10 rats/cage: A. control group B. 3Gy×10f C. 6Gy×5f D. 12.5Gy×1f E.15.3Gy×1f....
متن کامل